Exam Seat No:	Enrollment No:
	C.U.SHAH UNIVERSITY
	WADHWAN CITY

University (Winter) Examination -2013 Subject Name: -Differential Equations

Course Name :M.Sc(Maths) Sem-I Duration :- 3:00 Hours Marks :70 Date : 27/12/2013

Instructions:-

(1) Attempt all Questions of both sections in same answer book / Supplementary.

- (2) Use of Programmable calculator & any other electronic instrument is prohibited.(3) Instructions written on main answer Book are strictly to be obeyed.
- (3) Instructions written on main answer Book are strictly to be obeyed (4)Draw neat diagrams & figures (If necessary) at right places.
- (5) Assume suitable & Perfect data if needed.

SECTION-I

		SECTION-I	
Q-1	a)	Determine the radius of convergence of e^x .	(02)
	b)	Evaluate: $\Gamma\left(\frac{1}{2}\right)\Gamma\left(\frac{3}{2}\right)\Gamma\left(\frac{5}{2}\right)$.	(01)
	c)	Are sin x and cos x linearly independent?	(01)
	d)	Write generating function of Bessel's function.	(01)
	e)	Find <i>n</i> such that $\int_{-1}^{1} P_n(x) dx = 2$.	(01)
	f)	Write Legendre's equation.	(01)
Q-2	a)	Find the series solution about $x = 0$ for $y'' + y = 0$.	(05)
	b)	Show that $x = \infty$ is a regular singular point of $x^2y'' + 4xy' + 2y = 0$.	(05)
	c)	Solve the differential equation $y'' + y = \sec x$ by the method of variation parameters.	(04)
Q-2	a)	Find the series solution about $x = 0$ for $y' - 2xy = 0$.	(05)
	b)	Determine the radii of convergence of the following series. i) $\sum_{n=1}^{\infty} \frac{n!}{n^n} x^n$, (ii) $\sum_{n=0}^{\infty} n^2 x^n$	(05)
	c)	Determine the singular points of differential equation $2x (x - 2)^2 y'' + 3xy' + (x - 2)y = 0$ and classify them as regular or irregular.	(04)
Q-3	a)	Find the series solution about $x = 0$ for $2x^2y'' - 3xy' + (3 - x)y = 0$.	(07)
	b)	By using Rodrigues formula, find $P_n(x)$, where $n = 0, 1, 2, 3, 4$.	(07)
		OR	
Q-3	a)	Show that $\int_{-1}^{1} P_n(x) P_m(x) dx = \begin{cases} 0, & m \neq n \\ \frac{2}{2n+1}, & m = n \end{cases}$. Also evaluate	(07)
		$\int_{-1}^{1} P_3(x) P_2(x) dx .$	
	b)	Prove that: $i \int J_{\frac{1}{2}}(x) = \sqrt{\frac{2}{\pi x}} \sin x$, $i i \int J_{-\frac{1}{2}}(x) = \sqrt{\frac{2}{\pi x}} \cos x$,	(07)
		$iii)\frac{d}{dx}J_0(x) = -J_1(x)$	

SECTION-II

		SECTION H	
Q-4	a)	Eliminate the constants a and b from $z = (x + a)(y + b)$.	(02)
	b)	Solve: $z = px + qy + \sqrt{1 + p^2 + q^2}$.	(01)
		Solve: $xp + yq = z$.	(01)
		Under which condition Pfaffian differential equation in three variables is integrable.	(01)
	e)	Write Lagrange's equation.	(01)
	f)	Define: Hypergeometric function.	(01)
Q-5	a)	Find integral curve of the simultaneous differential equation $\frac{dx}{zx} = \frac{dy}{-zy} = \frac{dz}{y^2 - x^2}.$	(05)
	b)	Using Picard's method of successive approximations, find the third	(05)
		approximation of the solution of equation: $\frac{dy}{dx} = x + y^2$, where $y = 0$ when $x = 0$.	
	c)	Eliminate arbitrary function f from $z = xy + f(x^2 + y^2)$.	(04)
		OR	
Q-5	a)	Find integral curve of the simultaneous differential equation $\frac{dx}{x^2 + y^2} = \frac{dy}{2xy} = \frac{dz}{(x + y)z}.$	(05)
	b)	Solve $(y^2 + z^2)dz + xy dy + xzdz = 0$ by using Natani's method.	(05)
		Eliminate arbitrary function f from $z = f\left(\frac{xy}{z}\right)$.	(04)
		CHERING YOUR DEST	
Q-6	a)	A necessary and sufficient condition that there exists between two functions $u(x, y)$ and $v(x, y)$ a relation $F(u, v) = 0$ not involving x or y explicitly is that $\frac{\partial(u, v)}{\partial(x, y)} = 0$.	(07)
	b)	Find complete integral of $2(z + xp + yq) = yp^2$ by using Charpit's method.	(07)
		OR	
Q-6	a)	Show that a complete integral of $f(u_x, u_y, u_z) = 0$ is $u = ax + by + cz + d$ where $f(a, b, c) = 0$. Also find the complete integral of $u_x + u_y + u_z - u_x u_y u_z = 0$.	(07)
	b)	Prove:	(07)
	5)	(i) $F(-n, 1; 1; -x) = (1 + x)^n$,	(57)
		(<i>ii</i>) $F'(a,b;c;x) = \frac{ab}{c} F(a+1,b+1;c+1;x).$	

27