\qquad

C.U.SHAH UNIVERSITY

WADHWAN CITY

University (Winter) Examination -2013
Subject Name: -Differential Equations

Marks :70
Date : 27/12/2013

Instructions:-

(1) Attempt all Questions of both sections in same answer book / Supplementary.
(2) Use of Programmable calculator \& any other electronic instrument is prohibited.
(3) Instructions written on main answer Book are strictly to be obeyed.
(4)Draw neat diagrams \& figures (If necessary) at right places.
(5) Assume suitable \& Perfect data if needed.

SECTION-I

Q-1 a) Determine the radius of convergence of e^{x}.
b) Evaluate: $\Gamma\left(\frac{1}{2}\right) \Gamma\left(\frac{3}{2}\right) \Gamma\left(\frac{5}{2}\right)$.
c) Are $\sin x$ and $\cos x$ linearly independent?
d) Write generating function of Bessel's function.
e) Find n such that $\int_{-1}^{1} P_{n}(x) d x=2$.
f) Write Legendre's equation.

Q-2 a) Find the series solution about $x=0$ for $y^{\prime \prime}+y=0$.
b) Show that $x=\infty$ is a regular singular poinf of $x^{2} y^{\prime \prime}+4 x y^{\prime}+2 y=0$.
c) Solve the differential equation $y^{\text {s }}+y=\sec x$ by the method of variation parameters.

OR

Q-2 a) Find the series solution about $x=0$ for $y^{\prime}-2 x y=0$.
b) Determine the radii of convergence of the following series.

$$
\begin{equation*}
\text { i) } \sum_{n=1}^{\infty} \frac{n!}{n^{n}} x^{n} \text {, (ii) } \sum_{n=0}^{\infty} n^{2} x^{n} \tag{05}
\end{equation*}
$$

c) Determine the singular points of differential equation $2 x(x-2)^{2} y^{\prime \prime}+$ $3 x y^{\prime}+(x-2) y=0$ and classify them as regular or irregular.

Q-3 a) Find the series solution about $x=0$ for $2 x^{2} y^{\prime \prime}-3 x y^{\prime}+(3-x) y=0$.
b) By using Rodrigues formula, find $P_{n}(x)$, where $n=0,1,2,3,4$.

OR

Q-3 a) Show that $\int_{-1}^{1} P_{n}(x) P_{m}(x) d x=\left\{\begin{array}{ll}0, & m \neq n \\ \frac{2}{2 n+1}, & m=n\end{array}\right.$. Also evaluate $\int_{-1}^{1} P_{3}(x) P_{2}(x) d x$.
b) Prove that: i) $J_{\frac{1}{2}}(x)=\sqrt{\frac{2}{\pi x}} \sin x, \quad$ ii) $J_{-\frac{1}{2}}(x)=\sqrt{\frac{2}{\pi x}} \cos x$, iii) $\frac{d}{d x} J_{0}(x)=-J_{1}(x)$

SECTION-II

Q-4 a) Eliminate the constants a and b from $z=(x+a)(y+b)$.
b) Solve: $z=p x+q y+\sqrt{1+p^{2}+q^{2}}$.
c) Solve: $x p+y q=z$.
d) Under which condition Pfaffian differential equation in three variables is integrable.
e) Write Lagrange's equation.
f) Define: Hypergeometric function.

Q-5 a) Find integral curve of the simultaneous differential equation

$$
\begin{equation*}
\frac{d x}{z x}=\frac{d y}{-z y}=\frac{d z}{y^{2}-x^{2}} \tag{05}
\end{equation*}
$$

b) Using Picard's method of successive approximations, find the third approximation of the solution of equation: $\frac{d y}{d x}=x+y^{2}$, where $y=0$ when $x=0$.
c) Eliminate arbitrary function f from $z=x y+f\left(x^{2}+y^{2}\right)$.

OR

Q-5 a) Find integral curve of the simultaneous differential equation

$$
\begin{equation*}
\frac{d x}{x^{2}+y^{2}}=\frac{d y \cup N / v i d z}{=} \frac{d x y}{(x+y) z} . \tag{05}
\end{equation*}
$$

b) Solve $\left(y^{2}+z^{2}\right) d z+x y d y+x z d z=0$ y using Natani's method.
c) Eliminate arbitrary function f from $z=f\left(\frac{x y}{z}\right)$.

Q-6
a) A necessary and sufficient condition that there exists between two functions $u(x, y)$ and $v(x, y)$ a relation $F(u, v)=0$ not involving x or y explicitly is that $\frac{\partial(u, v)}{\partial(x, y)}=0$.
b) Find complete integral of $2(z+x p+y q)=y p^{2}$ by using Charpit's method.

OR

Q-6 a) Show that a complete integral of $f\left(u_{x}, u_{y}, u_{z}\right)=0$ is $u=a x+b y+$ $c z+d$ where $f(a, b, c)=0$. Also find the complete integral of $u_{x}+u_{y}+u_{z}-u_{x} u_{y} u_{z}=0$.
b) Prove:
(i) $F(-n, 1 ; 1 ;-x)=(1+x)^{n}$,
(ii) $F^{\prime}(a, b ; c ; x)=\frac{a b}{c} F(a+1, b+1 ; c+1 ; x)$.
(i) $F(-n, 1 ; 1 ;-x)=(1+x)^{n}$,
(ii) $F^{\prime}(a, b ; c ; x)=\frac{a b}{c} F(a+1, b+1 ; c+1 ; x)$.

